总部位于英国的研究人员首次对现场测试了一种量子重力测量工具,该工具可能会产生地下的Google型地图。通过消除不需要的读数的“噪音”,伯明翰大学开发的新传感器设备被认为比当前的乐器更准确,最多10倍。

该团队将其量子重力梯度仪建立在移动仪器中,并在其校园内调查了地下混凝土公用事业隧道。他们的研究结果是新利18备用published in the scientific journal Nature last month。该团队领导政府资助的计划,作为传感器和时机国家量子技术中心的一部分,其成员包括英国主要的大学和政府实验室。

该大学土木工程系基础设施监控教授妮可·梅特耶(Nicole Metje)说:“真正重要的是,我们已经证明了我们具有什么可检测性和敏感性,并且我们将此隧道用作代理。”

Metje说:“只有量子传感器……将有能力成为移动仪器。”“春季[设备]上的经典质量将永远无法做到这一点,因为它永远无法在短时间内[平均读数]。”

为了识别地下物体和特征,现场调查人员基本上使用了基于弹簧质量运动的重力仪器。弹簧延伸到不同程度,具体取决于埋入的物体的重力拉力,这与其密度有关。

But "it's impossible to differentiate between gravity and acceleration [caused by] any vibrational 'noise,'" says Metje. Construction traffic, wind or even distant tidal movements can cause such noise, which is difficult to strip out from survey readings. And long measurement times are needed to remove the effects of vibrational noise, making surveys slow, she adds.

Developed by Michael Holynski, the university’s head of atom interferometry, the new instrument negates the effects of vibrations and other disturbances. Basically, the instrument fires laser pulses into clouds of atoms sending them on two different paths. Using interferometry to compare the paths reveals local differences in gravitational fields.

To remove noise, the Birmingham device observes two sets of atom clouds at different distances from the feature being explored. While the resulting gravity readings will be different, the noise levels will be identical. Subtracting the two sets of results eliminates the noise without delay.

环境顾问RSK Group Ltd. Tuckwell领导了一个与重力仪开发有关的较早项目。但是他还是一名从业者,付出了“对重力进行详细测量”。

Though effective, the Birmingham instrument incorporates excessive redundancies that need removing before being put on the market, says Tuckwell. The main sensor is around 6.2 ft tall with a roughly 4.3 sq ft footprint. It is connected to a laser and control system trolley, raising the total weight to about 550 lb.

因为“在任何建筑,在th的最大风险e outset is unforeseen ground conditions," the instrument will be a valuable tool when it reaches the market, possibly in two years, believes Tuckwell. "There is so much potential for it that whoever gets there first is going to have a lot of takers."